• EDIT: ok this was nagging at me for a while as something being off, I think this is actually wrong (in some way that must cancel out to accidentally get the right answer) because I need to multiply by 2 pi c to consider all rotations of centers around (0,0) at a given radius, but then my integral no longer works. Ah well, that's what I get for trying to method act and solve quickly, I guess the hooligan stabs me. I think at least this approach done properly could save some dimensions out of the Jacobian we need to calculate. Original post below:

    Much more elegant: consider every circle that fits inside the unit circle, and we will work backward to find combinations of points. We only need consider centers on the x axis by symmetry, so these are parameterized by circle center at (0,c) and radius r with 0<c<1 and 0<r<1-c. Each circle contributes (2 pi r)^3 volume of triples of points, and this double integral easily works out to 2 pi^3/5 which is the answer (after dividing by the volume of point triples in the unit circle, pi^3)

    • took me a few reads but this is indeed correct (lol)
  • When I first read the title, I thought it was gonna be about a book similar to one I heard about called “Street Fighting Mathematics” and it would be about like heuristics, estimation, etc. but this one seems to be about a specific problem.
  • I'd prefer a world like this; higher levels of whimsy accompanied with greater danger
  • So, I’m left wondering why he did it the hard way.
  • What's even scarier than such encounter, is that I personally know some people who would survive it. Unfortunately, I'm not one of them.